EUROPE-INBO 2011

9th International Conference on the current and future implementation of the European Water Framework Directive

Adaptation to Water Scarcity and Regional Cooperation in the Middle East

Yehuda Shevah

OPORTO, PORTUGAL 27- 30 SEPTEMBER 2011

Global and Regional Warming

Worldwide Global Warming

• The first eight months of 2010 tied the for the warmest combined land and ocean surface temperature on record - 14.7 C , 0.67 C above the 20th century average.

 The June–August summer was 16.2 C, 0.60 C above the 20th century average of 15.6 C.
 Second warmest on record globally and the third warmest August on record, since 1880

NOAA's National Climatic Data Center

Climatic Change and Impact onWater Resources

higher temperatures
increase of evaporation
reduction of the amount of precipitation
change of seasonal distribution of precipitation

THE IMPACT IS BEING FELT IN THE FORM OF WATER SCARCITY, URBAN CROWDING AND FOOD CRISES

Maplecroft Water Security Risk Index Parameters

>access to improved drinking water and sanitation

>availability of renewable water and the reliance on external supplies

>the relationship between available water and demands; and

> water dependent economy.

Extreme & High Water Scarcity Risk Countries Water Security Risk Index, © Maplecroft 2011

The Index rates the Middle East countries among nations facing "extreme" (Syria and Egypt)and "High" water security risk (other neighboring countries) as having least secure supplies of water.

The Project Area

The Project Area Israel, Palestine and Jordan

Regional Administrative Boundaries

Watersheds Shared Water and Transboundary Resources

Groundwater basins and direction of groundwater movement (indicated by arrows)

Water Scarcity and Regional Cooperation

Regional Water Scarcity and the Needs for Regional Cooperation

The region water resources are under threat due to:

- Rapid population growth increased water demand
- Poor conservation of the environment
- Inadequate treatment of point and non point sources of pollution
- Trans-boundary movement of pollutants.

All these issues:

- Endanger the water resources and the drinking water quality, adding pressure on the scarce water resources.
- Fuelling the conflicting views of the shareholders and threatens the regional stability.

The genuine concern of all parties involved necessitates a secured safe and clean drinking water for all.

Regional Cooperation Initiative

• Water scarcity may however help foster cooperation instead conflicts and instability within a highly volatile situation.

• Cooperation in trans-boundary water resources management could contribute to sustainable management of shared water resources and attempts involving multilateral groups receive substantial support from the international community.

• Experts from Europe and the Mediterranean regions and beyond were engaged to share experience and identify the mechanisms to increase effective cooperation in water.

The Working Group represents a wide range of relevant disciplines which working together will focus on a key priority issues.

The Working Group

•Israel

Yehuda Shevah, Consultant - Project Team Leader
Miriam Waldman, Ministry of Science (ret.)
Alon Tal, Ben Gurion University
Clive Lipchin, Arava Institute for Environmental Studies

West Bank and Gaza Strip

Tamimi Abdel Rahman, Palestinian Hydrology Group - Sub-group Team Leader
Alfred Abed Rabbo, Bethlehem University, PA
Hassan Dweik, Al Quads University, PA
Yousef Abu-Mayla, Al-Azhar University, Gaza - Sub-group Team Leader

Jordan

Hanan Malkawi, Yarmouk University, Jordan - Sub-group Team Leader
Abdallah Al-Zoub, Al-Balqa University, Jordan
Abdul Aziz Al Najjar, Kuwait Chemical Society, Kuwait

International Experts

Hoetzel Heinz, KIT-University of Karlsrule, Germany - Sub-group Team Leader
Ameen Farouk Fahmy, Ain Shams University, Egypt
Kandile, G. Nadia, Ain Shams University, Egypt
Hemda Garelick: Middlesex University, UK
Stanley Langer, Science for Development, UK
Charles Kolb, Aerodyne Research, Inc. USA

Regional Cooperation Objectives

- Formation of a framework for regional and international cooperation
- Conducting an independent assessment of current and future water needs in the region, as a cornerstone for sustainable management and development of additional water resources
- Validating basic and baseline data, as an efficient platforms for sharing knowledge in the water sector
- Strengthening and enhancing regional partnership, dealing with existing and emerging causes of water crisis as related to:
 State of the Art and Equitable management of trans-boundary and shared water resources
- > Potential natural and non-conventional water resources
- > Safeguard of the environment and natural resources
- > Capacity Building
- Confidence building within the region

Water Resources Availability

Global Warming and Declining Rainfall (mm/year)

Replenishment of the Surface Reservoirs Galilee Sea Water Level: 1966 - 2008

1981

מפלס הכינרת בשנים 1966-2008

שנה

1993

1996

1999

2002

2008

Declining Groundwater Table - Mountain Aquifer

מנשה ת\1

Declining Groundwater Table – Coastal Aquifer

אקוויפר החוף - מפלס בקידוחים מייצגים

Fig. 3: Global Warming and Impact on the Replenishment of Water Resources

Fig. 2: Water Resources Availability in the Middle East Countries, 2008

Water Resources Quality

Water Quality & Ecology

The drastic drop in rainfall in the recent years caused:

Over exploitation of resources and diminished water quality

Salt water intrusion into groundwater in coastal regions drying of rivers and lake ecosystems

The public health is severely affected

Harming or killing plants and animals in aquatic ecosystems

Coastal Aquifer Water level: 1934 - 2007

Coastal Aquifer Chlorides Contents: 1934 & 2007

Gaza Strip Aquifer Water Quality Average EC, TDS, NO3 and Cl 2008

E.C	TDS	NO3	Cl
(mg/l)	(mg/l((mg/l)	(mg/l)
2144	1339	119	536

Chloride Concentrations in Drinking Water Wells, Gaza, 2004

Water Supply and Water Works

Israel National Carrier Tsalmon Canal and Reservoir

Lake of Galilee Water Treatment Plant

National Water Supply System

The King Abdullah Canal, Jordan Valley

The Tannur Dam, Jordan

The Wehda River Dam, Jordan

Region Accessibility to Piped Water & Improved Sanitation (WHO, 2008

Reliability and Adequacy of Supply

While infrastructure of supply is adequate, reliability of supply is deficient

Intermittent supply is common **Running water only on alternate days** In Amman, Jordan, water services operate only for 12 hours in a day.

Excessive leakage and losses in conveyance and networks reduce significantly the supply to the consumers.

Unaccounted for Water is high:
•34% in Palestine,
•25% in Jordan, and
•15% in Israel

The Way Forward

TO OVERCOME THE MAJOR CONSTRAINTS

SEMI-ARID CLIMATE:

- Inadequate water resources
- Frequent drought
- A large inter-annual fluctuation

UNEVEN GEOGRAPHYCAL DISTRIBUTION

- **80%** of the resources located in north & central regions
- Main demand & 65% of irrigable lands are in the south

DEPLETED & POLLUTED WATER RESOURCES:

Degradation & stringent standards

INCREASING POPULATION & WATER DEMAND:

A widening gap between supply & demand

Existing Regional Water Supply & Demand, 2010 & Projections 2020 & 2040

	Population (million)	18	23	30
Water Demand	Urban Demand	1325	2005	2805
MCM/year	Irrigation – Natural Water	1080	1725	1615
	Irrigation – Marginal Water	700	1205	1860
	Restoration/Replenishment	10	50	70
	Transboundary Supply	-95	-250	-390
	Total	3020	4735	5960
Per Capita	Domestic	73	89	92
M3/yr	Total	171	221	209
Water Resources	Surface water	543	605	565
MCM/Year	Groundwater	1626	1620	1935
	Wastewater Effluents	615	1140	1860
	Desalination	236	1370	1600
	Total			

Current and Projected Level of supply (M3/Cap/year)

DRINKING WATER SUPPLY (M3/CAP/YEAR)

TOTAL WATER SUPPLY (M3/CAP/YEAR)

Regional Water Supply - 2010 & Projections 2040

Water Scarcity Alleviation Water Resources Development Options

 Improved Management & Water Conservation

Improvement of Irrigation Efficiency

• Wastewater Reuse

• Desalination of Brackish and Sea Water

WATER DEMAND MANAGEMENT

Adoption of the Integrated Water Resources Management (IWRM)

Coordinated development and management of water and related resources, to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems

IWRM Principles

1. 2. 3.

- Legislative framework defining rules Organisational framework Regulatory instruments allocation and
- water use limits

- Available resources and needs 4.
- 5. Development options,

- Social change instruments -6. encouraging water oriented society 8. Economic instruments – cost and
- 7. prices

Improved management of the Water Supply systems

•Efficient Operation of the conveyance and distribution systems •Adequate preventive, periodic and curative maintenance •Rehabilitation of the deteriorating infrastructure, •Imposing tariffs, billing and collect revenues •Adequate funding, •Public awareness and education

Improvement of Irrigation

Improved and Efficient Agricultural Irrigation Systems

 Production of highly productive crops, less demanding in water

 Use of Improved ultra low volume irrigation techniques,

 Development of salinity tolerant varieties, adjusted to irrigation with brackish and secondary effluents.

Evolution of Advanced Irrigation Systems

TRENDS IN IRRIGATION EFFICIENCY 1950 - 2008

M³/Ha

Gravity Sprinkler Drip/Automation

Wastewater Reuse

Wastewater Reuse

Wastewater recycling is now worldwide recognized as a potential solution to augment water supply under water scarcity conditions.

Wastewater Treatment and Reuse Systems

ADVANCED TREATMENT (Tertiary Effluents):

- **Biological Treatment**
- Soil aquifer treatment,

To produce high quality effluent for unrestricted non-potable usages.

SECONDARY EFFLUENTS

Biological treatment,

Long detention period, in surface reservoirs,

¹ To produce effluents for restricted irrigation of non- edible crops.

Wastewater Treatment Systems and Resulting Effluents Quality

Parameter	Raw Swage		Treatment	
	Dan Region	Haifa	SAT	Surface Reservoir
Suspended Solids	380	750	0	33
BOD	430	595	0.5	8
COD	1050	1400	9	87
MBAS	11		0.2	0.3
T. Nitrogen	62		3.6	16
EC	1820		1675	2425
T. Coli.	8.2 10 ³			130
F. Coli.	7.2 10^3		0	25

Benefits and Potentioal Risks of Wastewater Reuse

Benefits :

Available 365 days a year, in reliable and predictable quantities,
Quantities are not normally reduced during a drought,
The price is negotiable - Cheaper than fresh water, and
The environment benefits - no discharge of wastewater effluents into natural water bodies.

Potential Risks and Constraints

Groundwater pollution and soil salinity
Potential ill effects and health risk
Acceptability by consumers
Institutional and funding constraints - Capital intensive and economic viability
Risk assessment studies and continuous monitoring systems are required

DESALINATION

Israel		Mm³/year	m³/day
	Ashkelon	110	301,370
0.7 Mm ³ /d	Hadera	127	347,945
	Palmachin	34	93,151
V + 1 Mm ³ /d	Ashdod	100	273,973
2.1 - 2.7 Mm ³ /d?	Sorek	150	410,959
(2020)	total	521	1,427,397

Seawater Desalination Plan & Plant Locations and Capacity 2005 - 2020

ASHKELON SWRO DP 120 MCM

v O

Palmachim SWRO DP 45 MCM

Hadera SWRO DP 127 MCM

Sorea SWRO DP 150 MCM

DESALINATION SOREK 150 Million my/year Seawater Desalination Facility

6

Legend

100000

1. Intake Pumping Station 2. Clear Well 3. Pre - Treatment 4. Sludoe Waste Treatment 5. Backwash Waste Plt 6. Management and Laboratory Building 7. Visitors Center - Observation Point 8. Warehouse Building and Yard 9. Desalination Island - Stage 1 10. Desalination Island - Stage 2 - 4 11. Safety Micronic Filters 12. Product Tank 13. High Voltage Sub Station 14. Electrical Building 15. Power Plant 15. Post - Treatment 17. Solar Panels

Ashdod SWRO DP 100 MCM

שטח כללי כולל מיקום המתקן ותוואי צנרת

תחנת כח

מחלף אשדוד

© 2007 Europa Technologies Image © 2008 DigitalGlobe

1°50'49.24" N 34°41'07.99" E elev 18 m

Streaming ||||||||| 100%

Google

Sea Water Desalination Plan

Evolution of Price for SWRO System

True Cost of Desalinated Water

The cost is reduced to a level to compete with traditional water supply options

WATER AUTHORITY				TATE OF ISRAEL	
Water Desalination Prices (\$) Per CN (VAT not included)					
Project name	Ashkelon	Palmachim	Hadera	Sorek	
Fixed price	0.4	0.35	0.25	0.25	
Variable price	0.3	0.45	0.4	0.27	
Total price	0.7	0.8	0.65	0.52	

Capacity Building

Ongoing Regional Training & Research

Jordan, PA and Israel

Major Projects

- Regional Water Data Banks Project -
- Middle East Desalination Research Center -
- Effects of global climate change on natural ecosystems SMART/ CLOWA.
- Red Sea Dead Sea Canal
- Regional Drinking Water Quality Assessment ILPAC Working Group

Major Research Areas

- Data generation, data transfer and joint studies
- IWRM, and trans-boundary shared water resources Management
- Hydro-geological studies
- Prevention of contamination of resources
- Utilization of marginal water resources (brackish water & effluents)

Trans-boundary Alexander, Nablus, Hebron and Bsor Watersheds Restoration Project

Dead Sea - Deep Core Drilling Project

2.5 million \$ project, sponsored by ICDP and carried out by consortium of scientists from Israel, PA, Jordan, Columbia Univ, GFz Potsdam, Norway, ETH Univ, and Japan

CONCLUSIONS

Over exploitation of water resources in the region has reached the point where irreversible damage was done to some of the aquifers, contributing the widening gap between supply and demand which cannot be met without a drastic institutional reform and perceptions of water.

On the demand side, water conservation, efficient O&M of water services, cost recovery and appropriate agricultural and trade policies are essential

On the supply side, recycling of wastewater and desalination emerge as the major options to satisfy current and future water supply. Innovation and the private sector will significantly reduce the cost of water treatment and desalination, rendering non-conventional resources affordable to all

Despite political and economics differences, the regional water crisis may shape a common water policy, selecting joint feasible projects, irrespective of political boundaries, *giving rise to* cooperation and a base for peace

Acknowledgement

Funding support is provided by the Division of the Chemistry and Environment (DIV Vi), International Union of Pure and Applied Chemistry (IUPAC).

Promoting collaborative and regional environmental studies in the Middle East.

