International Conference WATER IN MOUNTAINS 4,5,6 September 2002

EVALUATION OF ECOLOGICALLY ACCEPTABLE FLOW FOR ALPINE STREAMS IN SLOVENIA

Natasa Smolar-Zvanut

LIMNOS, Water Ecology Group Slovenia

CONTENTS

1. INTRODUCTION

- 2. DEFINITION AND BASIS FOR DETERMINATION OF EAF IN THE SLOVENIAN ALPINE STREAMS
- 3. CRITERIA AND METHODS
- 4. APPLICATION OF DETERMINATION OF EAF
- 5. CASE STUDY: THE SOCA RIVER
- 6. CONCLUSIONS

1. INTRODUCTION

Intensive economic development and land use → The need for water is rising fast → water abstraction from the alpine running waters: <u>drinking water, energetic use, fish-farming,</u> <u>technological purposes</u>

Determination of EAF is an extraordinary difficult task, because of direct confrontation between

ECOLOGY : ECONOMY

→ interdisciplinary approach and each section of the stream should be treated separately

2. DEFINITION AND BASIS FOR DETERMINATION OF EAF

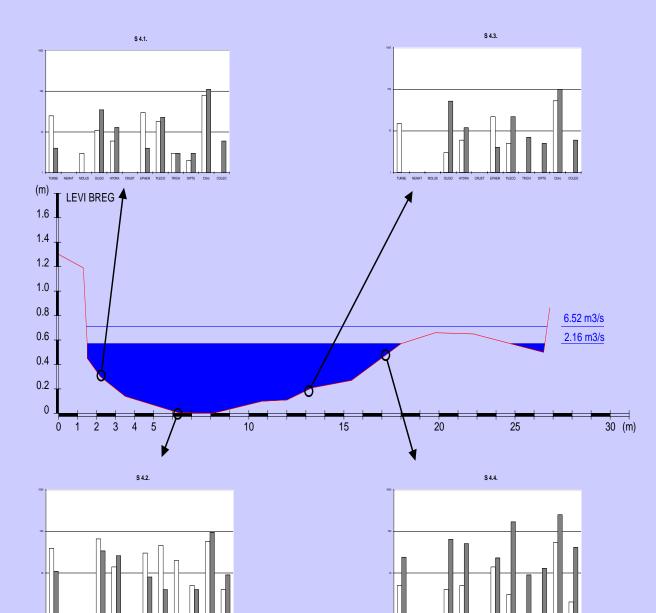
ECOLOGICALLY ACCEPTABLE FLOW is the quantity and quality of water which preserve ecological balance in the stream and in the riparian zone

- the importance of preservation and protection running waters, their habitats with flora and fauna and diversity of organisms
- Special attention should be paid to <u>rare and</u> <u>endangered species</u> respectively the groups important for the preservation of the ecological balance.

- EAF should be determined <u>before each impact</u> in the river or in the area, which could have an influence on the structure and function of the river as the ecosystem.
- The necessary of all existing hydraulic, hydrological and ecological <u>parameters</u> on the sections concerned should be checked.
- For each <u>change of quality and quantity</u> of water in the river a new determination of EAF is required.

3. CRITERIA AND METHODS

Hydrological, hydraulic, morphological and ecological criteria


HYDROLOGICAL METHOD

- \rightarrow Basic hydrological and hydraulic parameters
- \rightarrow Ecological estimation, inventory of habitats
- → Morphological estimation (substrata)

ECOLOGICAL METHOD

 \rightarrow Inventory of water organisms: zoobentos, phytobentos, macrophytes, fish

 \rightarrow Seasonal dynamics

TURBE NEMAT MOLUS OLIGO HYDRA CRUST EPHEM PLECO TRICH DIPTE Chiro (

TURBE NEMAT MOLUS OLIGO HYDRA CRUST EPHEM PLECO TRICH DIPTE Chiro CO

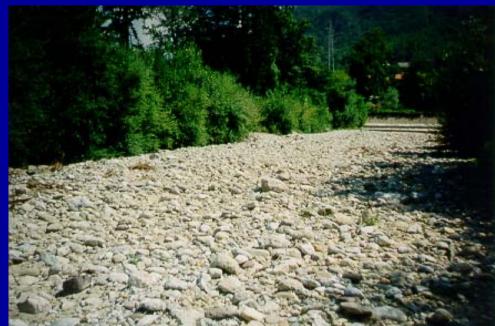
The EAF is determined according to biotic and abiotic parameters that the ecological balance is preserved

Decission \rightarrow results of experts

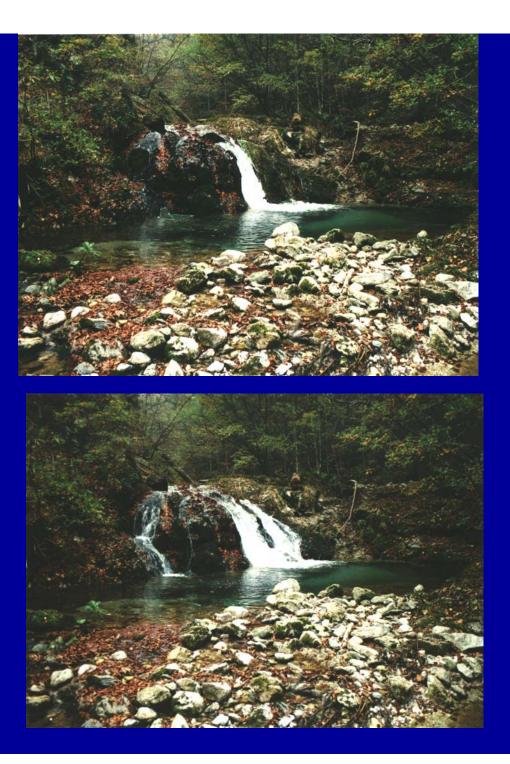
The values vary for different seasons

4. APPLICATION OF DETERMINATION OF EAF

From 1992 the EAF was determined on more than 100 parts of alpine running waters in Slovenia and mostly for existing water users – the tolerance limit of the user economy was consider


 \rightarrow The most water users abstract too large quantities of water in low flow periods;

IMPACT: changes in physical, chemical, hydrological and morphological parameters of water → natural balance was disturbed


Q = 1600 l/s

Q = 0 I/s

Q = 25 I/s



5. CASE STUDY: THE SOCA RIVER

- The first hydropower plants were built 1930-1932
- The <u>Doblar and Plave</u> power plants were constructed in 1939 and 1940
- As a consequence of power utilisation, there is no natural flow regime downstream of the Podsela Dam to the Italian border.

THE PURPOSE: Determination of EAF The Soca River power plant Doblar and Plave, (90) 180 m³/s 4320 m, 7950 m, 1996 - 2001 SO1 - SO4Qmin Doblar = 0.2 m³/s, Qmin Plave = 0.5 m³/s

MATERIAL AND METHODS

- Periphyton and periphyton biomass, zoobentos in different aquatic habitats
- Hydrological parameters: flow, current velocity
- Flow duration curve with and without abstraction
- Temperature, oxygen, saturation, conductivity
- The Wolman Count of sediment samples was performed
- Flora and fauna in the riparian zone
- Landscape evaluation increasing flow downstream the dam (test)

RESULTS

Table 1: Flows in the River Soca in 1998.

Cross section	Q W98 (m³/s)	Q S98 (m³/s)	Q S98 (m³/s)	Q W98 (m³/s)
SO1	11.3	11.3	16.9	16.3
SO2	0.26	0.27	0.26	0.23
SO3	0.26	0.27	0.26	0.23
SO4	2.23	0.86	/	1.25

Downstream of the dam Podsela:

Physicochemical parameters

High seasonal oscillation in water temperature and concentration of oxygen

Water temperature: in the summer higher, in the winter lower

Concentration of oxygen: in the summer lower, in the winter higher

Differences among aquatic habitats

Species composition

Cladophora glomerata – high biomass

High temperature, limited movement of substrata, constant low flow

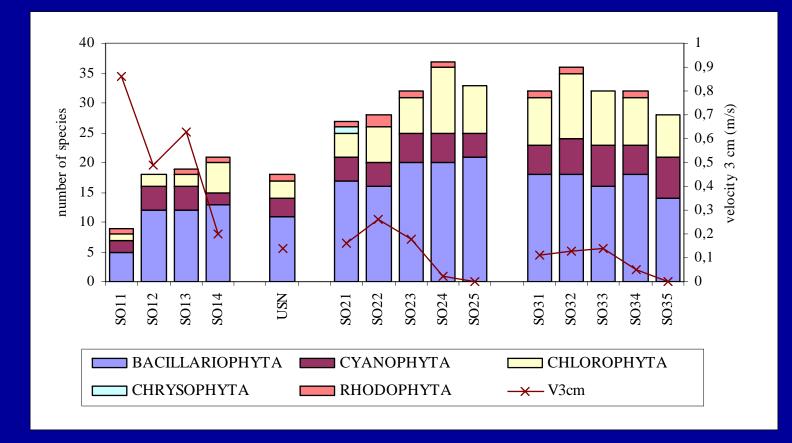


Figure 1. The periphyton composition at sampling sites in the river Soca and stream Usnica, 25th of August 1998.

Periphyton biomass

- The highest values in summer in the sections with low water level and low current velocity,
- Low flow, favourable light conditions and sediment structure were factors which made proliferation of algae possible

TEST: Increasing flow downstream the dam

Table 2. Velocity and depth according to increasing flow

Cross section	Parameter	0,26 m³/s	0,6 m³/s	1,1 m³/s	1,6 m³/s
SO2	<i>v</i> (m/s)	0,20	0,48	0,52	0,61
	Depth _{max} (m)	0,36	0,39	0,47	0,53
SO3	<i>v</i> (m/s)	0,17	0,34	0,38	0,42
	Depth _{max} (m)	0,27	0,29	0,37	0,44

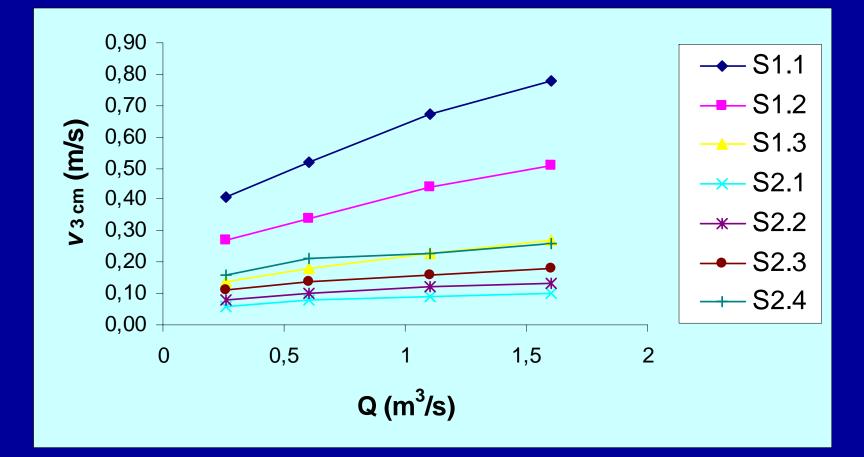


Figure 2. Test: Increasing flow in comparison with velocity 3 cm above the bottom

Q = 200 l/s

Q = 1100 l/s

EAF DETERMINATION FOR THE SOCA RIVER

The impact of abstractions, especially in the time of low flows shows big changes in <u>hydrological</u>, <u>physicochemical</u> and <u>biological</u> parameters downstream of the dams

> Improve the habitats: the number and diversity

- > Take into account: existing water abstraction for (60 years)
- According to analyses of abiotic and biotic parameters

The EAF below the Podsela dam = $1.0 \text{ m}^3/\text{s}$ (before $0.2 \text{ m}^3/\text{s}$) The EAF below the Ajba dam = $2.5 \text{ m}^3/\text{s}$ (before $0.5 \text{ m}^3/\text{s}$)

6. CONCLUSIONS

- In last 10 years there has been strong efforts to improve ecological characteristics of the Slovenian alpine running waters with determination and assurance of EAF
- The water should be abstracted only on the sections where this is ecologically and economically acceptable

