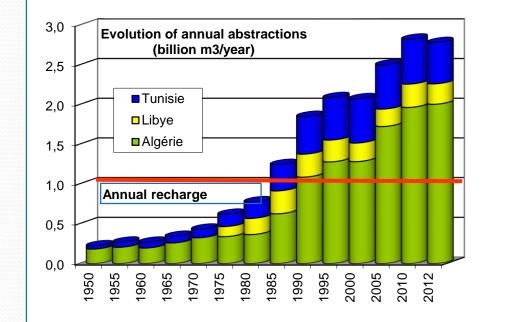
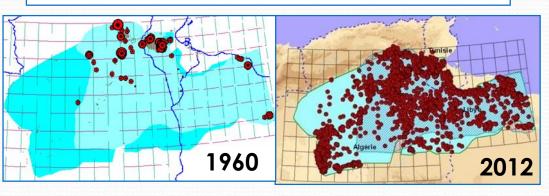


Innovations in hydro-agricultural management to strengthen resilience to climate change

SASS North-Western Sahara Aquifer System


Algeria, Libya and Tunisia


2007 - 2014

Surface Reserves Recharge 1.000.000 km² 60.000 billion m³ 1 billion m³/year

The SASS has vast but little renewable water resources

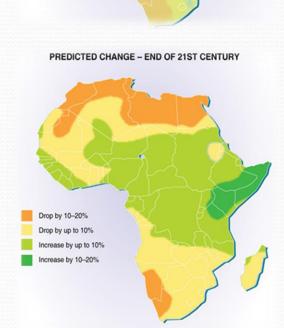
Population Growth

• 1.0 (1970) - 8 millions (2030)

Increase of irrigated areas

50.000 ha (1970) – 400.000 ha (2030)

Impacts


- Disappearance of artesianism
- Increase of pumping height
- Depletion of outlets
- Drying-up of traditional catchment systems "Foggaras"
- Water salinity
- Sea water intrusion in the Gulf of Sidra zone

Impacts of Climate Change

END OF 20TH CENTURY

nd

Rising temperatures

→ increase in water demand from populations and agriculture → rise in abstractions

Decrease in precipitations

➔ diminish aquifer recharge in certain areas (i.e. the Djeffara plain area)

➔ rise in abstractions as an efforts to compensate the rainfall deficit

Sea-level rise

➔ accelerates sea water intrusion in the coastal zones

Objectives of SASS III project

- Pilots to demonstrate the possibility of improving water efficiency in irrigation
 - Adopt new techniques for water efficiency
 - Redefine irrigation strategies
 - Valorize non-conventional water resources
- Conduct a quantitative study on water costs and pricing
 - Implement a progressive water pricing policy
 - Promote a water management and valorization strategy

OUED RIGH - Algeria Rationalization of soil and irrigation water management Objectives

- Resolve the problem of hydromorphic soil and salinity
- Improve irrigation water efficiency

Activities

- Building of an underground drainage network
- Replacement of flood irrigation system by localized irrigation networks

Results

- Groundwater level lowered by 30 to 40 cm
- Reduction of Soil salinity
- Land use increased by 100% with no increase in water use
- Incomes increased by 150%

oss Rehabilitation of irrigated lands

Objectives

- Address problem of salinization and hydromorphy
- Improving irrigation water efficiency

Activities

- Installation of a buried drainage network
- Use of solar-energy for drainage water pumping
- Construction of a new well

Results

- Lowering of the water table
- Soil desalinization process

OASIS OF JEDIDA - Tunisia

SS OSS

Protection of « Foggaras »

Objectives

- Restoration of the initial flow of « foggaras »
- Restoration of the oasis traditional system (date palms and intercropping)

Activities

- Introduction of localized irrigation system
- Cultivation of date palms and intercrops
- Installation of solar pumps to restore the flow

Results

- Two o threefold increase of the crop yields
- Doubled irrigated perimeters
- Water saving estimated at 40 %
- Strong demand for the replication of experience

REGGANE - Algeria

Foggaras drying-up

DJEFFARA - Libya Restoration of irrigated agricultural production systems Objectives

 Development of appropriate agricultural production systems combining rainfed olive farming with irrigated vegetable intercrops

Activities

- Introduction of the drop irrigation system
- Introduction of changing irrigation calendar

Results

- Improved yields and farmers income
- Soil salinity controlled
- Water savings: reduction from 13 000 to 8700 m3/ha to
- Demand for replication

SIDI MAKHLOUF - Tunisia OSS Rational use of brackish waters for irrigation Objectives

- combining rainfed olive farming with irrigated vegetable intercrops
- Partial desalinization of water (4 to 2g)

Activities

- Installation of desalinization station (400 m3/day with 50% lower salinity)
- Introduction of intercrops in-between olive trees
- Change of irrigation calendar

Results

- Water efficiency more than doubled
- Better olive yields and increased income
- Profitability of the desalinization system

CHENCHOU - Tunisia Oss Irrigation using desalinated geothermal water

Objectives

- Capitalization of a successful initiative in soil/water desalinization
- Pilot devoted to off-season food crops in a greenhouse heated and irrigated with desalinated geothermal water (average temperature 60°)

Activities

 Organization of field visits and open house days for water actors of the three countries

The project has demonstrated that safeguarding Saharan agriculture is possible.

The project has also demonstrated that it is possible to improve farmers' income while preserving water and soil resources.

Thank you for your attention

