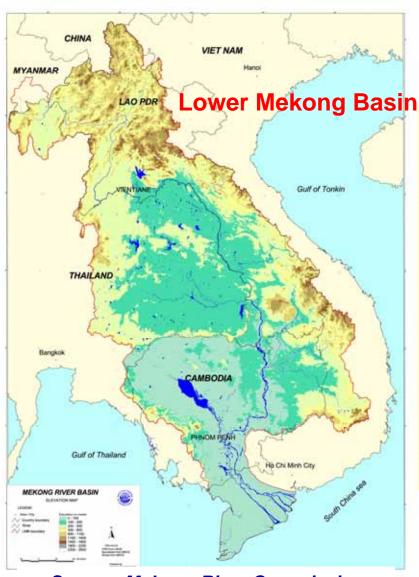


7EME ASSEMBLEE GENERALE MONDIALE

DU 07 AU 09 JUIN 2007 A DEBRECEN (HONGRIE)

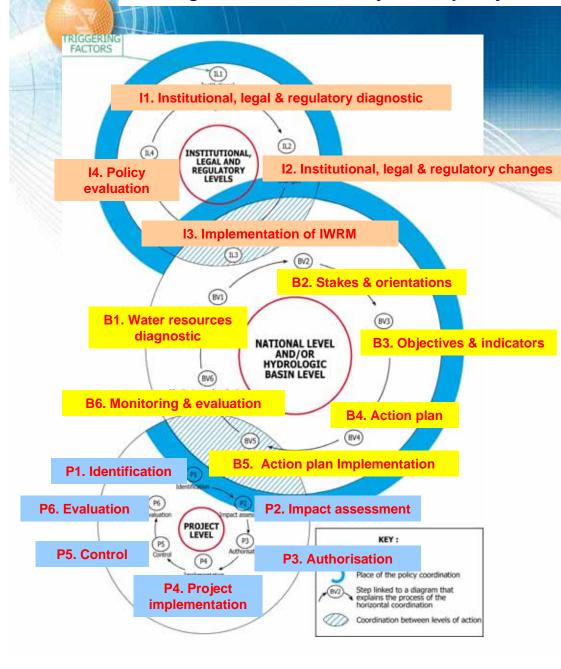
Mekong River transboundary water quality monitoring (learnings from a case study)

par Dominique Fougeirol


Responsable gestion intégrée des ressources en eau BURGEAP, Département International

CONTENTS

- 1. Mekong River: a transboundary River Basin
- 2. Water quality monitoring for non routine parameters
- 3. Conclusions


Source: Mekong River Commission

The Mekong River: a transboundary basin which extends over 6 countries:

- China
- Myanmar
- Lao PDR
- Vietnam
- Thailand
- Cambodia

With big cities such as Ventiane in Lao and Phnom Penh in Cambodia

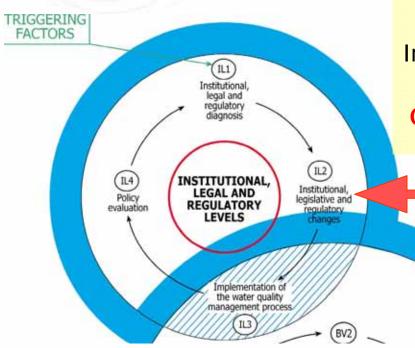
Guidelines for Policy coordination

(established for the METAP* Water Quality Management Program):

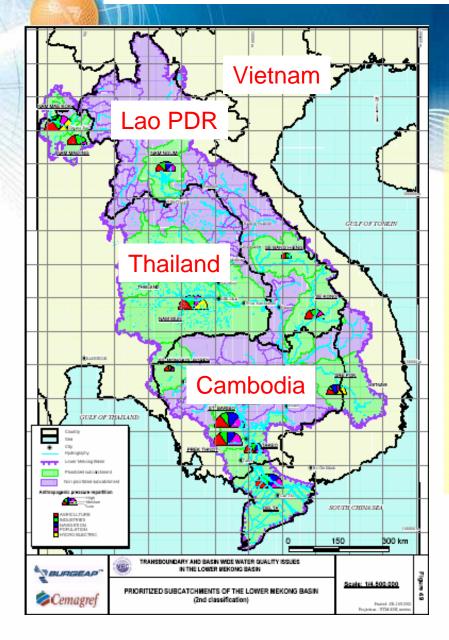
IWRM = three levels of action:

- The Institutional, legal regulatory level
- The Hydrologic basin level
- The Project level

* METAP: Mediterranean
Environmental Technical Assistance
Program (a World Bank multifunded program)


Guidelines for Policy coordination

(established for the METAP* Water Quality Management Program):


Level 1: The Institutional, legal, regulatory level

Institutional change for the Mekong River Basin case :

Creation of the Mekong River Commission

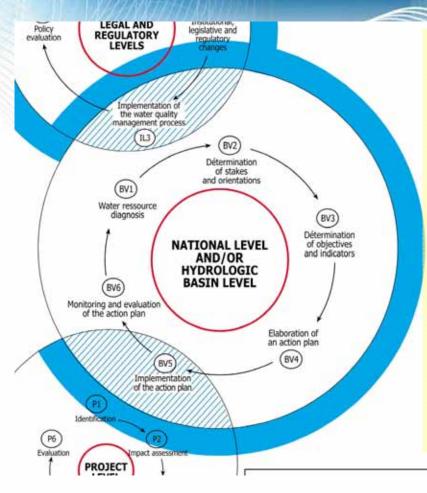
The Mekong River Commission (MRC):

1957: Mekong River Secretariat

1995: Mekong River Commission

4 countries (Lower Mekong Basin) are currently members of the MRC:

- Cambodia
- Lao PDR
- Thailand
- Vietnam


CONTENTS

- 1. Mekong River: a transboundary River Basin
- 2. Water quality monitoring for non routine parameters
- 3. Conclusions

Partenaires:

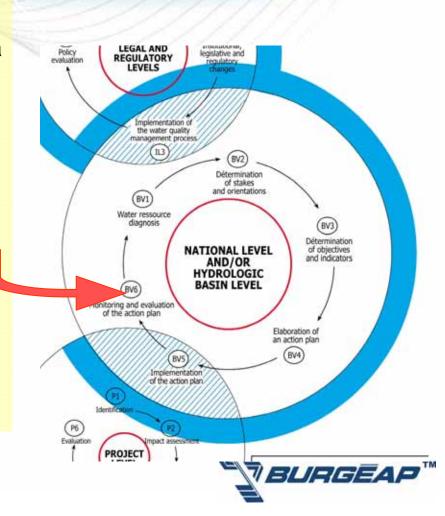
Mekong River Commission BURGEAP - CEMAGREF

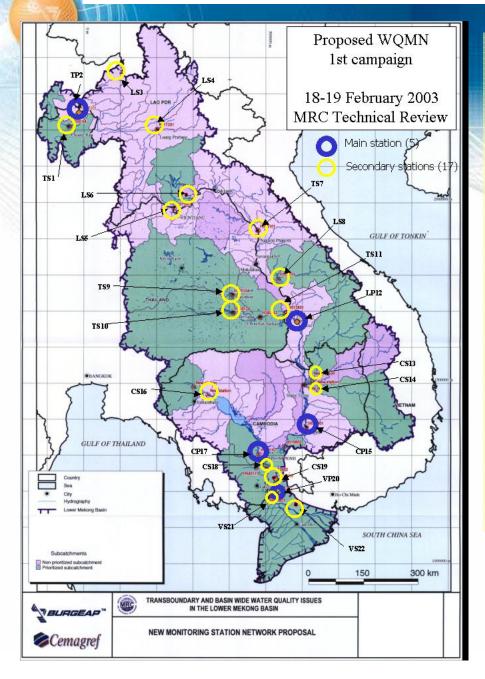
Guidelines for Policy coordination

(established for the METAP* Water Quality Management Program):

Level 2: The Hydrologic Basin level: A continuous improvement process

Mekong River Basin case:


The 4 countries involved in the MRC are implementing joint actions within the Lower Mekong Basin (LMB)


Example of action : water quality monitoring

Example of action within the Lower Mekong River Basin: Water quality monitoring

- In 2003, 98 permanent water quality sampling sites were being used by MRC in Lao PDR, Thailand, Cambodia and Vietnam.
- Routine water quality parameters
 Physico-chemical parameters routinely analysed: flow, TSS, pH, Temp.,
 Cond., Ions, Nutrients (N, P), DO,
 COD and some trace metals
- Need for non-routine water quality parameters analysis (pesticides and heavy metals) was identified

Sampling and analyses were conducted on:

- River water
- Sediments
- Bioassays & Diatom

from relevant locations

selected in each of the four countries members of MRC, taking into account:

- Pressure of human activities
- Transboundary issues

MeKong River water quality sampling and analysis

Interpretation of routine analyses:

- •The « SEQ-Eau » methodology
- •Methodology used by the French water basin agencies and mentioned in the European Water Framework Directive as a relevant system to determine a class of aptitude of the water bodies for ecological, drinking water and recreational activities.

Interpretation of non-routine analyses:

- Threshold effect concentration (TEC) and
- •Probable effect concentration (PEC) (MacDonald & al, 2000) were used in the absence of any guidelines developed specifically for the Mekong region

	Class of water quality	Blue	Green	Yellow	Orange	Red			
	ORGANIC MATTER AND OXYDABLES								
	DO (mg/L)	8	6	4	3				
	COD (mg/L 0 ₂)	5	7	10	12				
	NH4+ (mg/L NH4)	0.5	1.5	2.8	4				
	NITROGENEOUS MATTER								
	NH4+ (mg/L NH4)	0.1	0.5	2	5				
« SEQ Eau »	NITRATES								
for routine	NO3 (mg/L NO3)	2	10	25	50				
parameters	PHOSPHOROUS MATTER								
parameters	TP (mg/L)	0.05	0.2	0.5	1				
	PO ₄ ³⁻ (mg/L PO ₄)	0.1	0.5	1	2				
	SUSPENDED MATTER								
	TSS (mg/L)	5	25	38	50				
	TEMPERATURE								
	T (°C)	21.5	23.5	25	28				
	MINERALIZATION								
	Conductivity (microS/cm)	2500	3000	3500	4000				
	ACIDIFICATION								
	pH Min	6.5	6.0	5.5	4.5				
	Max	8.2	8.5	9.0	10				

Standards and thresholds used for classification of the water quality of the Mekong river and tributaries

Source: Mekong River Commission **BURGEAP- CEMAGREF**

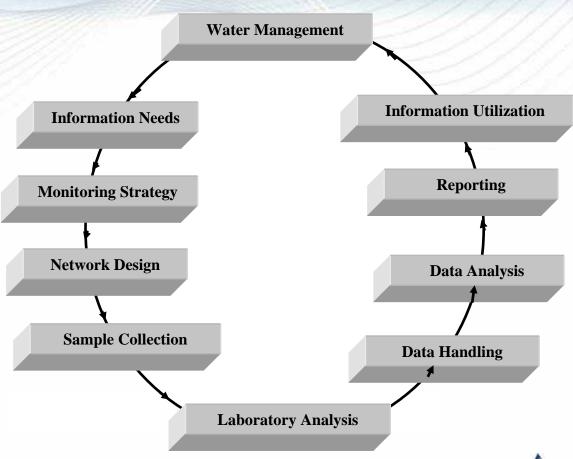
Mekong River transboundary water quality monitoring (learnings from a case study) Organic matter Nitrates TSS Mineralisation Nitrogeneous Phosphorous Temp. Station Code: H380103 Station Name: Ubon Country: THAILAND Water Body: Nam Mun

ALTERATION	Organic matter	Nitrogeneous matter	Nitrates	Phosphorous matter	Suspended matter	Temperature	Mineralisation	Acidification
SDATE	DO + COD + NH4	NH4	NO3	PO4 + TP	TSS	TEMP_°C	COND	рН
1985								
1986								
1987								
1988								
1989								
1990								
1991								
1992								
1993								
1994								
1995								
1996								
1997								
1998								
1999								
2000								

	DO_mg/L	CODMN_mg/L	NH4_mg/L	NO3_mg/L	PO4_mg/L	TOTP_mg/L	TSS_mg/L	TEMP_°C	COND_microS/cm	рН
MIN	3,88	0,10	0,001	0,142	0,003	0,003	2,0	20,0	710,00	6,44
MAX	10,00	6,50	0,231	2,839	0,098	0,137	352,0	34,5	6480,00	8,71
MEAN	7,48	2,95	0,070	1,051	0,034	0,047	55,0	28,9	2620,80	7,45

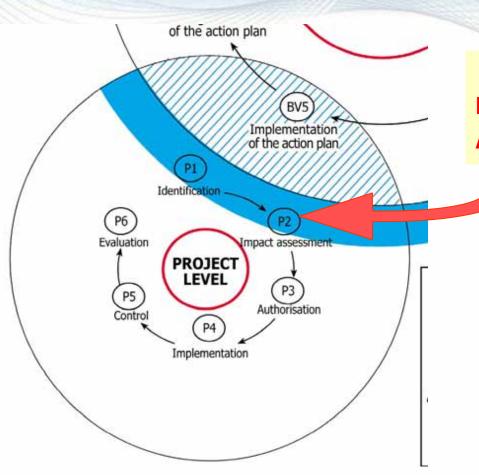
Results:

- Water quality is generally good in the Lower Mekong Basin
- No transboundary pollution has been identified within the LMB
- Heavy metals found in sediments close to big cities, but disappear rapidly downstream
- The boundary site between China and Lao PDR requires further work and monitoring (source of heavy metals)
- Toxicity of sediments not conclusive however based on a single bioassay
- However, the MRC and member countries will have to remain vigilant in the future, as urban and industrial development and expansion of agriculture proceeds in the Lower Basin, and as development accelerates in the upper Chinese portion of the basin

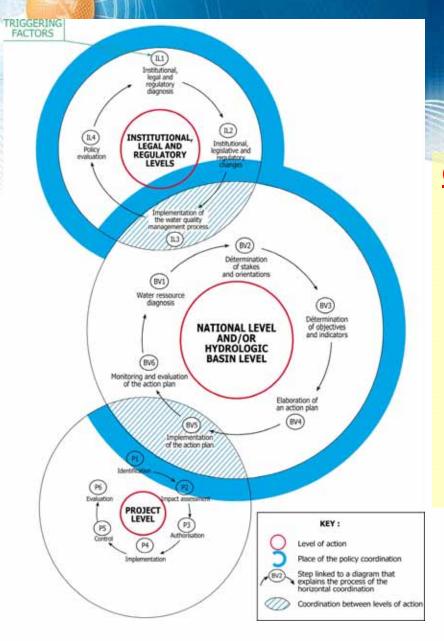


CONTENTS

- 1. Mekong River: a transboundary River Basin
- 2. Water quality monitoring for non routine parameters
- 3. Conclusions

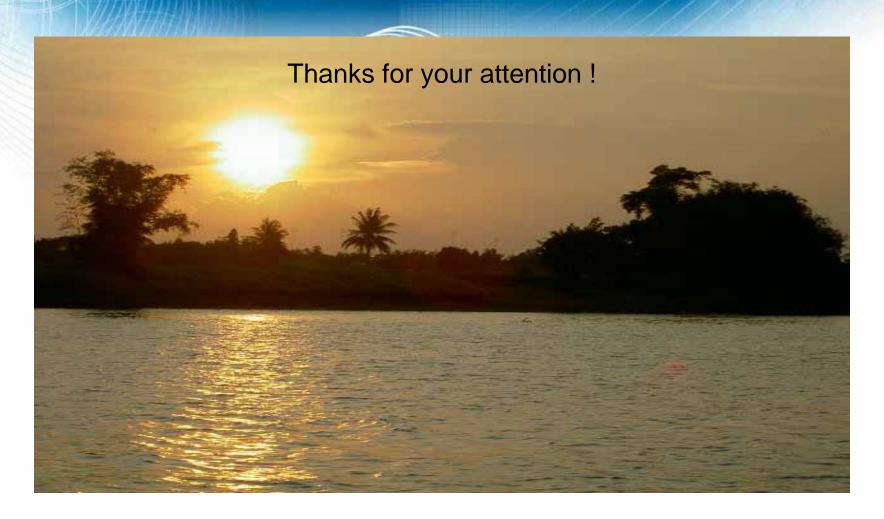


<u>Conclusion 1/3</u>: Next steps = to use the monitoring results for River basin management



Conclusion 2/3: Monitoring results to be used at project's level for Environmental Impact Assessments.

Level 3: The Project's level: Authorisations, control, evaluation



Conclusion 3/3: for integrated river basin management, action must be implemented at the three levels simultaneously:

- The Institutional, legal regulatory level
- The Hydrologic basin level
- The Project level

