German-Lebanese Technical Cooperation Project

Water balance for the Jeita groundwater catchment using WEAP

Beirut Water Week
February 20, 2013

Philip Schuler MSc, BGR
I. Problem statement
II. Objectives of the model
III. WEAP model
IV. Results
V. Conclusion
I. Problem statement

• High karstification of the Jurassic (J4) and Cretaceous (C4)
I. Problem statement

- Quantity of Jeita discharge influenced by:
 - Climate
 - Ecosystem
 - Agriculture
 - Domestic
I. Problem statement

- Seasonal variation of discharge of Jeita Spring

Average monthly discharge of Jeita Spring in MCM between 1966 & 1971

Available resources for supply management?
II. Objectives of the model

- Hydrological balance on a monthly basis
- Assessment of hydrological components:
 - Rainfall
 - Evapotranspiration
 - Surface runoff
 - GW recharge
- Domestic & agricultural demand
- Origin of Jeita’s groundwater
- Water management options: MAR
III. WEAP model

- Water Evaluation and Planning
- Non-commercial software
- Developed by the Stockholm Environment Institute
- Used within the MENA region
 - Jordan, Morocco, Tunisia, Palestine, Syria
- Conceptual in- & output model
- Modeling of hydrological budget
- Natural and anthropogenic supply and demand
III. WEAP model

- Discretization
- Sub-division into 11 sub-catchments
 - I. Geology
 - II. Surface runoff
 - III. Spring- & reservoir catchments
- Reflect spatial variability:
 - Topography
 - Rainfall
 - Evapotranspiration
III. WEAP model

Geology-based
- Aquitard [J5-C3]
- C4
- J4

Spring- & reservoir-based
- Labbene (8)
- Assal (7)
- Afqa (6)
- Chabrouh Dam (9)
- Rouaiss (10)

Surface runoff-based
- Aquitard [J5-C3] leaving JSC (4)
- Aquitard [J5-C3] to Daraya (1)
- Aquitard [J5-C3] to Nahr Ibrahim (11)
- J4 leaving JSC (5)
- J4 to Daraya (3)
- C4 (2)

Data basis: BGR, SRTM DEM, Landsat 7
III. WEAP model

- Input parameters:
 - Rainfall
 - ET
 - Landcover
 - Landuse
 - Domestic demand
 - Irrigation efficiency
 - FAO crop coefficients
 - Chabrouh dam
 - Irrigation canals
 - GW abstraction
 - ...

Protection of Jeita Spring
IV. Results

Total annual precipitation leads to:

- Flow to Groundwater: 61%
- Surface Runoff: 26%
- Evapotranspiration: 13%
Natural annual water balance of the Jeita Spring catchment in MCM

- Rainfall: 406 MCM
- Snow: 375 MCM
- GW recharge: 213 MCM
- Natural ET: 164 MCM
- Runoff: 162 MCM
- Snow melt: 78 MCM
- Rainfall infiltration: 213 MCM
IV. Results

C4 contribution: 89.2 MCM/a 51.7% of Jeita’s discharge

J4 contribution: 52.9 MCM/a 30.7% of Jeita’s discharge

Aquitard contribution: 30.3 MCM/a 17.6% of Jeita’s discharge

Afqa & Rouaiss contribution: 69.7 MCM/a 40.4% of Jeita’s discharge

C4 contribution: 89.2 MCM/a 51.7% of Jeita’s discharge
V. Conclusion

• > 50% of Jeita’s annual discharge comes from the C4

• > 40% of Jeita’s annual discharge comes from Afqa and Rouaiiss Spring

• Large quantities of water resources are unused: 164 MCM direct runoff per year

• Potential for MAR: Increasing discharge at Jeita and reducing the water shortage period
& Thank You!

Philip Schuler MSc – Water Management Expert
Raifoun, Roukoz Sfeir Building
PhilipSchuler@gmx.de +961 70 258094